ПРИРОДНАЯ СРЕДА

УДК 58.02 ББК 28.5

Н.В. Ловелиус, А.Ю. Ретеюм

МАЛЫЕ И БОЛЬШИЕ СОЛНЕЧНЫЕ ЦИКЛЫ В ЛЕСАХ СКАНДИНАВИИ

В работе рассмотрены проявления солнечных циклов длительностью от 11 до 1430, 2860 и 5720 лет в изменениях роста леса на примере сосновых боров Швеции. Показано, что солнечно-земные связи имеют различный характер в четных и нечетных циклах.

Ключевые слова:

солнечные циклы, рост леса, Швеция

Ловелиус Н.В., Ретеюм А.Ю. Малые и большие солнечные циклы в лесах Скандинавии // Общество. Среда. Развитие. — 2018, № 3. — С. 103—106.

- © Ловелиус Николай Владимирович доктор биологических наук, профессор, Российский государственный педагогический университет им. А.И. Герцена, Санкт-Петербург; e-mail: lovelius@mail.ru
- © Ретеюм Алексей Юрьевич доктор географических наук, профессор, Московский государственный университет им. М.В. Ломоносова, Москва; e-mail: aretejum@yandex.ru

Зависимость роста леса от солнечной активности, изучение которой около века назад начал А.Е. Дуглас, в последние десятилетия была неоднократно подтверждена в ходе исследований в разных странах. Полученные результаты свидетельствуют об устойчивом проявлении 11-летнего цикла в кольцах деревьев, по крайней мере, с пермского времени [2]. Однако дальнейшее развитие дендроиндикации космических воздействий сдерживают три фактора:

1) ограниченность исходной информации, поскольку она, как правило, отражает события только последних столетий;

- 2) недостаточное знание долговременных циклов и
- 3) отсутствие ясности относительно природы действующих сил.

Путь преодоления указанных трудностей показан ниже на конкретном примере.

Углубленное рассмотрение космогенных колебаний роста леса в Евразии целесообразно начать с рассмотрения длиннейшего из имеющихся рядов. Это дендрохронология, охватывающая 7400 лет, которая создана коллективом шведских исследователей по сосновым борам, растущим на севере страны [1; 3].

 $Tаблица\ 1$ Границы больших циклов Солнечной системы

Длительность цикла, лет						
179	358	715	1430	2860	5720	11440
1990 г.	1990 г.	1990 г.	1990 г.	1990 г.	1990 г.	1990 г.
1811 г.	1632 г.	1275 г.	559 г.	-870 г.	-3730 г.	-9450 г.
1632 г.	1275 г.	559 г.	-870 г.	-3730 г.	-9450 г.	
1453 г.	917 г.	-157 г.	-2305 г.	-6590 г.		
1275 г.	559 г.	-872 г.	-3730 г.	-9450 г.		
1096 г.	202 г.	-1590 г.	-5160 г.			
917 г.	-157 г.	-2300 г.	-6590 г.			
738 г.	-514 г.	-3020 г.	-8020 г.			
559 г.	-872 г.	-3730 г.	-9450 г.			
381 г.	-1230 г.	-4450 г.				
202 г.	-1590 г.	-5160 г.				
23 г.	-1950 г.	-5880 г.				
-157 г.	-2300 г.	-6590 г.				
-335 г.	-2660 г.	-7310 г.				
-514 г.	-3020 г.	-7670 г.				
-693 г.	-3380 г.	-8380 г.				

Применение метода наложенных эпох в анализе многовековых данных по индексам толщины древесных колец оказывается возможным благодаря установленным временным рубежам в движении Солнца относительно барицентра Солнечной системы, определяющего не только его активность, но также скорость вращения Земли (табл. 1).

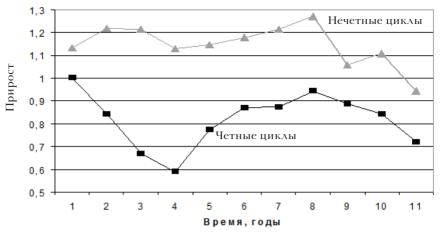


Рис. 1. Средний прирост сосен в годы трех нечетных и четных 11-летних ииклов с максимальной и минимальной солнечной активностью

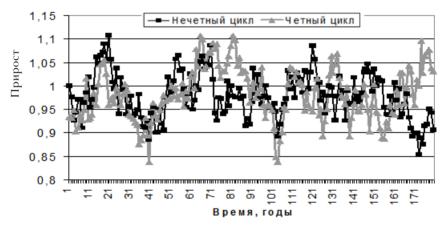


Рис. 2. Средний прирост сосен в годы 20 нечетных и четных 179-летних циклов (нумерация больших циклов идет от 1811 г.)

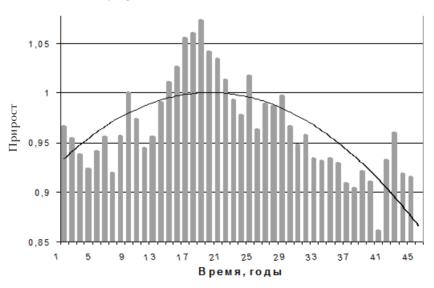


Рис. 3. Средний прирост сосен в годы 40 периодов цикла Брикнера в начале 179-летних циклов

1,1

1,05

0,95

0.9

0,85

1,3

1,2

1,1

0.9

0,8

0,7

5 205 256

Прирост

8 8

Прирост

Рис. 4. Четный 358-летний цикл роста леса. Осреднение по 10 сериям за период более 7 тыс. лет. 20-летнее осреднение

300 320

<u>გ</u>

562

in Oil

(O)

1,3 1,2

1,1

664

260 280

200 220

Время, годы

88

Время, годы

307

360

8

Рис. 5. Последний нечетный 715-летний цикл роста леса (1274–1989 гг.)

Рис. 6. Пример проявления четного 1430-летнего цикла в жизни леса (2303-873 гг. до н.э.). 20-летнее осреднение

Рис. 7. Два последних 2860летних цикла, диагностируемых по росту деревьев; образуют 5720-летний цикл

По имеющимся данным, голоцен берет начало в 9300 г. до н.э. или 9700 г. до н.э. Как видим, система солнечных циклов в точности укладывается в рамки этой эпохи, что свидетельствует о ведущей роли космоса в крупных глобальных изменениях биосферы. Найденная закономерность открывает возможности использования точной хронологии. Согласно расчетам, в 1990 г. на смену голоцена пришла другая геологическая эпоха.

Изучение величин приростов за последние 300 лет показывает, что четные и нечетные 11-летние циклы солнечных пятен оказывают существенно различное влияние на лес. Особенно хорошо обнаруженный феномен виден при сравнении периодов с повышенной и пониженной солнечной активности, характерной соответственно для нечетных и четных циклов (рис. 1).

Два непохожих по солнечным и земным характеристикам малых цикла составляют сложный 22-летний цикл Хейли, который, в свою очередь, подчиняясь восьмиричному правилу сложения (22 + 22 + 22 + 22 $+22 + 22 + 22 + 22 \approx 179$), входит в 179летний цикл (большой сарос). Его существование становится очевидным при осреднении величин солнечных пятен методом наложенных эпох за последние 1000 лет, разделяемых по астрономическому критерию наименьшего расстояния между центром Солнца и барицентром Солнечной системы. Особенности каждого из восьми элементов в то или иное время зависят от его положения в системе (рис. 2).

Обнаруживается значительная синхронизация роста деревьев в первой половине рассматриваемого цикла и ее отсутствие во второй половине, что говорит о действии какого-то фактора. Середина периода отмечена противоположным поведением леса в годы нечетных и четных циклов. Это проявление 89-летнего цикла Ганского-Глейссберга, который также делится нечетные и четные по дифференцированной активности Солнца и отклику леса на перемены в космосе.

Результаты осреднения индексов по 40 периодам длительностью в 179 лет отражают высокую степень упорядоченности прироста сосен в первую четверть цикла (коэффициент корреляции по нечетным и четным периодам достигает 0,63). Есть все основания утверждать, что мы здесь сталкиваемся с циклом Брикнера длительно-

стью около 45 лет с его характерным признаком двухчастной структуры (рис. 3). Годы увеличивающегося и уменьшающегося прироста деревьев хорошо соответствуют нечетным и четным 22-летним циклам.

Первый многовековой хрон с типичными максимальными амплитудами колебаний у середины образуют два неравных по исследуемым показателям 179-летних цикла (рис. 4).

Следующий многовековой цикл длительностью около 715 лет проявляется главным образом уже знакомыми нам резкими колебаниями прироста деревьев у временной границы двух 358-летних циклов (рис. 5), что, вероятно, означает сильное переувлажнение территории в течение нескольких десятилетий.

Четко выделяется 1430-летний цикл (715 лет х 2) с уникальными по размаху колебаниями условий среды обитания на стыке его двух временных частей (рис. 6).

Наконец, дендрохронология позволяет говорить о существовании циклов длительностью в 5720 и 2860 лет. Первый из них, исходя из астрономических критериев, берет начало в 3730 г. до н.э., что на 20 лет раньше времени окончания атлантического периода в Северной Европе, согласно известной схеме Блитта-Сернандера. Граница составляющих его 2860-летних циклов приходится на IX век до н.э. (точнее на 870 г. до н.э.), это примерно на 400 лет раньше, чем принятый раздел суббореальной и субатлантической климатических стадий (рис. 7).

Возникает вопрос: чем же объясняются столь существенные изменения природы на Земле при периодических движениях Солнца относительно барицентра Солнечной системы, благодаря которым, собственно, и строится вся иерархия циклов. Маловероятно, что передача космического импульса к планете происходит непосредственно благодаря солнечному излучению - слишком незначительны вариации его интенсивности. Видимо, необходимо искать другие проводники. Можно высказать предположение об участии трех процессов, контролирующих динамику земных оболочек. Это колебания скорости вращения планеты, водородная дегазация недр и модулирование галактических космических лучей.

Авторы признательны X. Грудду и его коллегам за возможность использования уникальной хронологии.

Список литературы:

- [1] Grudd H., Briffa K.R., Karlen W., Bartholin T.S., Jones P.D. and Kromer B. A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial timescales // The Holocene. − 2002. № 12. − P. 657–665.
- [2] Luthardt L., Rößler R. Fossil forest reveals sunspot activity in the early Permian // Geology. 2017, v. 45. P. 279–282.
- [3] National Centers for Environmental Information https://www.ncdc.noaa.gov/paleo-search/study/17262